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Chapter 1 

Introduction 

1.1    Report Identification 

The Adaptable Dependable Wrappers research project was performed by Key Soft- 
ware, Inc., of Ithaca, New York, over a 33 month period ending June 1999.   This 
project was sponsored by the US Defense Advanced Research Project Agency (DARPA). 
The USAF contract number for this work is F30602-96-C-0355. Its DARPA Order 
Number is E288. 

This document is the final report of technical results from the project. It is a complete 
and self-contained description of those results. It incorporates most of the text of 
previous project reports, and therefore supersedes them. 

We assume that readers of this report are familiar with general terminology and con- 
cepts underlying computer systems and computer programming, such as compilation, 
execution, processors, processes, networking, and operating systems. We do not as- 
sume any prior knowledge of specific system properties, such as computer security, 
fault tolerance, or real time, or of specific programming languages, network protocols, 
or operating systems. The report will introduce terminology and summarize relevant 
concepts from these specific areas when they are needed, and will provide references 
to the literature for more detailed study. 

1.2    Project Goals 

The goal of the Adaptable Dependable Wrappers project was to design and implement 
tools that make it easy to create specialized wrappers for software components of a 



distributed system. These wrappers allow components to be glued together into larger 
systems. The wrappers must be dependable for the system to be dependable, and 
they must be adaptable to allow for a changing environment. 

Adaptable, dependable wrappers are a step toward building evolutionary computer 
systems, which are defined in the following section. 

1.2.1    Evolutionary Computing 

In the future, an increasing number of systems will require evolutionary computing. 
An evolutionary computer system is one that must continue processing 

• while adapting to a changing environment, 

• while permitting software and hardware upgrades, and 

• in spite of failures of some of its subsystems. 

Evolutionary computer systems continue to operate over long periods of time and 
must not be rebooted during those periods, either because reboot is impractical or 
because a reboot would take too long, preventing the system from carrying out its 
real-world mission. 

An evolutionary computer system must be flexible enough to adapt and to be modified 
while it is in use. Over a long period of time, change is inevitable and flexibility is 
needed to cope with that change. 

The largest evolutionary computer system in use today is the Internet. In principle, 
the Internet could be rebooted: it does not have strict performance requirements and 
therefore is not a real time system. Rebooting the Internet, however, is impractical 
because too many people are involved in its administration. Rebooting the Internet to 
upgrade it would also be expensive because it means replacing specialized hardware. 
So the currently planned upgrade of the Internet, to replace the Internet Protocol 
(IP), will be a gradual replacement of IP version 4 with IP version 6[BM95]. The 
two versions of IP will coexist in the Internet for a long time, and at no time will the 
Internet be rebooted to make the upgrade. 

Evolutionary computing systems will become more common as the embedded systems 
now used for real time control of many processes become increasingly linked into larger 
distributed systems. Currently, most embedded systems are isolated: in cars, VCRs, 
machine tools, etc. Soon, however, many of these embedded controllers will be part 
of the Internet and will be interconnected into systems of systems. The larger such 



a system of systems grows, the harder it will be to arrange to reboot it. Eventually 
reboot will be unacceptable and a new evolutionary computing system will be born. 

Evolutionary computer systems are typically distributed. A system is distributed if it 
has components that run on separate computers, called hosts, that share no physical 
memory. The hosts of a distributed system are linked by a network of communication 
paths. Components of the distributed system communicate using protocols, which are 
well-defined patterns of interaction involving two or more components. 

Better technology is needed to support evolutionary computing. The upgrade of the 
Internet Protocol will be an expensive change and so is not ideal as an example of 
how to upgrade an evolutionary system. Better would be support for incremental 
changes that could be applied as routinely and as inexpensively as single-host oper- 
ating systems are now upgraded and patched. This support should allow: 

• incorporation of new code into running systems and diffusion of new code 
throughout distributed subsystems; 

• automatic analysis of new code to identify its worst-case behavior and identify 
interference with previously running code; 

• fine-grained control over privilege given to new code; 

• protocols to coordinate the diffusion of new code; 

• replacement of protocol layers without disruption to processing in other protocol 
layers; 

• protocols to tolerate and adapt to subsystem failures. 

1.2.2    Wrappers 

Much of the technology needed for evolutionary computing can be localized in soft- 
ware wrappers. A wrapper is a software layer used to change the interface of a 
component or to give new properties, such as fault tolerance or security, to the inter- 
action between components. By changing the wrappers, component interfaces can be 
changed to allow new connections between components. Properties can be changed 
to satisfy new requirements. These changes permit much of the flexibility that evo- 
lutionary computer systems need. 

Software wrappers are often used to glue existing subsystems into a larger system with 
new properties and functions. The wrappers know the protocols needed to make the 
subsystems work together, even if they were not originally designed for a common 



purpose. When a system is reconfigured, either to replace a subsystem or to change 
the quality of service offered on a communication link between subsystems, it is the 
software wrappers that enable the reconfiguration by replacing or augmenting the 
protocols they use. 

1.3    Project Overview 

The software developed on this project supports the construction of wrappers that 
can run a variety of protocols. The wrappers can use protocols that enhance system 
dependability. The wrappers can adapt by changing the set of protocols they use. 

The project built upon previous work. Wrappers for dependable systems and wrap- 
pers with variable sets of protocols have both been built before. The contribution 
of this project, however, was to focus on wrappers that can adapt by downloading 
code for new protocols from other wrappers and running it, while maintaining critical 
properties of the system in which they are embedded. This focus on adaptability and 
critical properties to support evolutionary computing distinguishes this project from 
other work on wrappers. 

1.3.1    Background: Dependable Wrappers 

A wrapper that is dependable imparts critical properties to each component that it 
wraps. In this report "dependability" includes both fault tolerance and security. 
Protocols exist to support both these critical properties. 

A system is fault tolerant if it will continue correct operation in spite of failures of 
some of its subsystems. A conceptually simple way to increase the fault tolerance 
of a software component is to replicate it, distribute it, and coordinate the replicas. 
If not too many of the distributed component replicas fail, then the component can 
recover from the failures and continue to operate correctly. 

Replica coordination can be implemented by a component wrapper. This means 
that a component need not be changed when replica coordination is added to it: 
the wrapper carries out the algorithms needed for replica coordination and offers the 
component the same interface it had before wrapping. Wrapping separates the design 
of functionality from the design of fault tolerance. This has several advantages: 

• To protect against a different kind of component failure one need only change 
the wrapper, not the component. 



• In principle any kind of component may be wrapped, including legacy systems. 

• Wrappers may be used to protect against design flaws as well as hardware failure 
if independent designs are used for each of the replicated components[AK84]. 

One well-known approach to building fault tolerant wrappers is Schneider and Lam- 
port's "State Machine Approach" [Sch90]. Many different protocols can be used within 
the State Machine Approach, for example [Cri85][LSP82][BSS91][Rei96]. 

On a previous project, Key Software implemented the State Machine Approach within 
Rome Laboratory's Knowledge-Based Software Assistant (KBSA)[Ben94]. Our im- 
plementation constructed fault tolerant wrappers from a specification of the number 
and kind of failures to be tolerated[Key95]. The wrapper functionality is described 
in the KBSA component specification language, which is object-oriented and similar 
to C++. 

Building some kinds of security into a system can also be done with wrappers. For 
example, data sent over a public network can be kept confidential by encrypting in 
the sending wrapper and decrypting in the receiving wrapper. Key distribution and 
authentication protocols can also be implemented in the wrapper. 

Security wrappers of the kind just described are often implemented in standalone 
hardware. The Network Encryption System (NES), sold commercially by Motorola, 
is a recent example[Fra94]. Implementing the wrapper in hardware avoids the threat 
of circumventing security by tampering with underlying operating system software. 

Security wrappers can be implemented in software if the operating system support 
for that software is also trusted. For example, current plans for the Next Gen- 
eration Internet Protocol (IPv6) allow software to use the network layer protocol 
to carry application specific security and authentication data possibly generated in 
software[BM95]. Another example is Netscape's Secure Sockets Layer[Net96]. This 
protocol wraps whatever lies above the transport layer with authentication and en- 
cryption in a transparent way. 

A more ambitious example can be found in the THETA secure distributed operat- 
ing system[ORA92]. THETA is designed to support distributed multilevel secure 
services. These services are typically created by embedding single-level code in a 
multilevel wrapper. Security in THETA depends on running the software wrappers 
in a trusted operating system such as Synergy[S+93], Trusted Solaris, or HP-BLS. 
THETA wrappers can also be configured to tolerate network partition failures. 

Fault tolerance and security are not independent. In particular, the fault tolerance of 
a distributed system that uses replica coordination must depend on authentication. 
To see this, suppose that a component replica cannot tell the source of any message it 



receives. Then a malicious attacker could masquerade as any of the replica's peers and 
could thwart any protocol for coordinating the replicas. Thwarting their coordination 
would destroy their ability to act as a single fault tolerant component. 

In many fault tolerant systems of practical interest it is not necessary to protect 
against malice, and the source of messages can be known with high confidence. In 
these systems fault tolerance need not involve security. But when malicious attacks 
are possible a distributed authentication protocol such as Kerberos [NT94] must be 
used. 

To build a system that can survive in the presence of malicious failures is a diffi- 
cult problem, but one that has received much attention. Protocols exist to tolerate 
Byzantine failures (i.e., arbitrary and possibly malicious component behavior). These 
include protocols for reaching consensus among a group of component replicas, some 
of which may have failed [BMD93], and protocols for masking failures with voting and 
efficiently transmitting the voted result from one component to another [Ech86]. 

1.3.2    Approach: Adaptable Wrappers 

A wrapper that is adaptable can be changed to fit well into its environment. Adapt- 
ability has two parts: 

1. A wrapper is configured at compile-time to integrate it into a system and to opti- 
mize its performance. Configuration will typically be done by human designers, 
offline. 

2. A wrapper is reconfigured at runtime to support evolutionary computing. Re- 
configuration will typically be automatic, an interaction between running wrap- 
pers in which code is exchanged. 

The approach taken by this project addresses both configuration and reconfiguration 
in a uniform way: both were treated as instances of protocol addition. A wrapper 
is configured with an initial set of protocols for interacting with its environment and 
can reconfigure itself by learning new protocols from other wrappers. 

An essential part of the project has been to design a wrapper framework that ac- 
commodates protocol addition and replacement. A wrapper framework is a chassis 
with slots into which protocol peers can be plugged. A protocol peer is an instance 
of an executing protocol. The protocol peer contains protocol code for executing one 
role in the protocol, e.g., in a client-server protocol the client and server roles may 
execute different code. The protocol peer also contains data encoding the state of the 
protocol peer during execution. 
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Figure 1.1: inserting protocols into the wrapper framework, both at compile-time 
from a library and at runtime from another component 

Figure 1.1 shows the wrapper framework conceptually. Protocol peers can be inserted 
into slots either at compile-time or at runtime, as shown in the figure. 

The framework design addresses several key problems. First, the framework must offer 
a way to connect a component to its environment via protocols that are run within 
the wrapper. The form of these connections will depend on various factors, including 
details of the component interface and of the local operating system. Second, the 
framework must allow the possibility that different protocol peers will need to interact. 
The most common interaction between peers is sharing data that is global within the 
wrapper. Such sharing is not only efficient, it supports continuous operation when 
protocols are upgraded. Third, the framework must protect protocol peers and the 
shared data because some peers may be untrustworthy. Fourth, the framework must 
allow the shared data to be extended as new protocols are added. These issues are 
discussed at length in this report. 

1.4    Report Outline 

The rest of this report is structured as follows: 

10 



Chapter 2 discusses the wrapper framework, including its requirements and 
high-level design. The discussion of requirements shows how the wrapper is 
expected to adapt, and what this implies for the design. The key design issues 
are the protection and extension of wrappers, and both issues are analyzed. 

A key part of the design is a mechanism, called dynamic extension, which allows 
data structures to be modified while they are being used, and to maintain 
protection during and after modification. Dynamic extension allows adaptable, 
dependable wrappers to be built. 

Chapter 3 lists the applications we made of the wrapper framework during 
this project. Most of the applications are protocols for use in the wrapper 
framework. One application was a wrapper for an off-the-shelf expert system 
shell. Some of the applications make use of dynamic extension. All use the 
protection facilities of the wrapper framework. 

Chapter 4 concludes with a summary of the accomplishments of this project 
and some comments about ways in which the work could have been extended. 
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Chapter 2 

Wrapper Framework 

A wrapper is a layer of design that changes the interface to, or the properties of, a 
part of a system. The wrapper forms a boundary for that system part. We will refer 
to the part of a system that is wrapped as a component and the rest of the system as 
the component's environment. 

A design may include a wrapper for any of several reasons: 

• to translate data passed between the component and its environment from one 
form to another; 

• to change the syntax of the calls recognized by a component or to modify a 
communication protocol used by the component; 

• to extend the component's functionality; 

• to add properties such as fault tolerance or security to the interactions of the 
component with its environment. 

These reasons often arise when a component must be embedded into a larger system. 

Although a wrapper is a boundary layer, it need not prohibit direct access to the 
component it wraps. For example, many wrappers have been written for the MS- 
DOS operating system[Mic91]. These wrappers typically provide some new set of 
operating system calls with new syntax and semantics but still allow applications 
to use most or all of the original MS-DOS interface. One might argue that such 
extensions are not wrappers at all because they do not form a complete boundary 
for the component. We view such extensions, however, as a complete design layer 
that simply leaves some of the component's original interface unchanged; where the 
interface is unchanged the boundary is simply very thin. 
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For some wrappers it may be unclear which side of the wrapper boundary is the 
component and which the environment. These cases are rare. Usually the design of 
the component is largely fixed before the wrapper is built, whereas the environment 
is unbounded. In all ambiguous cases it is left to the system's designers to decide, if 
necessary, which part of the system is the component being wrapped. 

A wrapper framework1 is a simple wrapper that can be extended into more compli- 
cated wrappers and that contains general mechanisms needed by many such wrappers. 
Wrapper frameworks are important in a changing environment. When the environ- 
ment changes, the wrapper framework allows modifications and extensions to the 
wrapper so that the wrapper can continue to function in the new environment. 

Wrappers are usually, but not always, implemented in software. We will confine our 
attention in this report to software wrappers. Software is more easily modified than 
hardware and therefore a software-implemented wrapper framework will more easily 
support the goals of wrapper modification, extension, and evolutionary computing. 

This chapter presents our design and rationale for a wrapper framework. Section 
2.1 discusses the requirements for a wrapper framework. Section 2.2 presents the 
internal structure of a wrapper and the general mechanisms supported by a wrapper 
framework. 

The wrapper framework must address several particular problems. First, it must 
protect itself from some or all threats in the environment. Section 2.3 discusses 
protection. Second, it must allow a wrapper to be modified and/or extended while it 
is in use. Section 2.4 discusses extensibility. 

2.1    Requirements 

We expect that a wrapper framework will have the following properties: 

• It must allow multiple protocols to run concurrently. These protocols can in- 
clude communication protocols, either point-to-point or multicast protocols, 
and other kinds of protocols such as those used for clock synchronization. 

• It must allow adaptation by changing protocols while in use and it must protect 
itself from disruptive protocols. Both these goals can be met With a framework 
that is reflective[KdRB91], i.e., one in which the properties and behavior of 
protocols can be analyzed and modified at runtime. 

1In this report we use the word "framework" with its loose English meaning of "skeletal structure" 
rather than with its more precise meaning in object-oriented design. 
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It must provide a hardware-independent platform on which wrapper extensions 
can be downloaded and run. This property of hardware independence suggests 
that the wrapper framework should provide a virtual machine for running its 
extensions. A simple way to get this virtual machine is to implement at least 
the wrapper extensions, and maybe the wrapper framework itself, in a machine- 
independent programming language such as Java[AG96]. Java, in particular, 
defines a Java Virtual Machine (JVM)[LY97] that guarantees a program will 
yield the same results when run on different hardware architectures. 

2.2    Design 

The wrapper framework consists of three parts: 

1. A set of protocol peers. Each protocol peer is an executing instance of one role 
in a protocol. For instance, a client-server protocol typically has a client role 
and a server role, and each time a client-server connection is established there 
will be a client peer in one wrapper and a server peer in another. 

2. A set of data shared between protocols. This data may be accessed concurrently 
by one or more peers in the wrapper. In this report, data shared between 
protocols will be called global because it is global within the wrapper (even 
though it is also local to the wrapper in the context of the complete system of 
which the wrapper is part). Data is local when it is accessible by only one peer. 

3. A set of adapters that connect communication protocol peers to a wrapped 
component. The adapters allow switching between communication protocols in 
a way that is transparent to the component. 

These parts of the framework are discussed further in the next three sections.   A 
diagram showing the different parts of the wrapper design appears in the final section. 

2.2.1    Protocol Peers 

The wrapper framework will support several different kinds of protocol and their 
peers. These include: 

• Communication protocols.   These protocols transmit data between wrapped 
components. 
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• Clock synchronization and other wrapper coordination protocols. These proto- 
cols work in the background, not interacting directly with the wrapped compo- 
nent but supporting the operation of other protocols. 

• Metaprotocols. These protocols download and install other protocols in an 
adaptable wrapper. 

The main purpose of a metaprotocol is to facilitate one wrapper learning a new 
protocol from another wrapper. A metaprotocol will take some or all of the following 
actions: 

• triggering - a metaprotocol is begun, or triggered, when one wrapper, A, decides 
that the set of protocols it is using should be changed. Several conditions can 
trigger the metaprotocol: 

- Another wrapper, possibly acting on behalf of a human user, explicitly in- 
structs A to download a new protocol. This instruction starts the metapro- 
tocol. 

— A currently running protocol in wrapper A detects that quality-of-service 
requirements are not being met and that protocol notifies the metapro- 
tocol. Quality-of-service requirements can include sufficient throughput, 
sufficient reliability, or sufficient redundancy among replicated peers par- 
ticipating in the protocol. 

• 

• 

negotiating - Wrapper A decides that another wrapper, B, either has a new 
protocol needed by A or needs a new protocol that A has. A and B then 
negotiate to come to agreement about the properties of the protocol to transmit. 

downloading - One wrapper transmits the protocol data to the other. The 
protocol data includes an executable description of the protocol, plus optionally 
a specification of the protocol's properties and a proof that the properties hold. 

verifying - Some properties of the new protocol are verified, possibly by a deci- 
sion procedure, possibly by proof checking. 

translating - The receiving wrapper converts the protocol to a form that can 
be executed by the wrapper. 

installing - The wrapper establishes one or more protocol peers to run the 
protocol, giving each peer the necessary access rights to data structures within 
the wrapper. 
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After these steps are completed the receiving wrapper is capable of engaging in the 
new protocol when it is needed. 

Different metaprotocols will carry out the steps differently. In particular, not all these 
steps are necessary in every metaprotocol. Some metaprotocols, for example, will do 
less verification than others. 

Protocol Bootstrapping 

A metaprotocol is itself a protocol. So metaprotocols can be downloaded at runtime 
just like other protocols. This fact means that different wrappers may use different 
metaprotocols and that a single wrapper may run more than one metaprotocol at the 
same time. 

Protocol bootstrapping is the process by which a wrapper learns new metaprotocols. 
Initially the wrapper has only a trivial metaprotocol to get started. The trivial 
metaprotocol does little, if any, verification of protocols it downloads and imposes no 
restrictions on the access rights of the new protocols. The trivial metaprotocol can 
be used to download more sophisticated metaprotocols. These can download other 
metaprotocols in turn, if necessary. 

The possibility of protocol bootstrapping means two things for the wrapper: 

1. The metaprotocols used by a wrapper do not need to be decided in advance. 
This allows better metaprotocols, with better algorithms for negotiating and 
verifying, to be installed later. 

2. The wrapper framework needs to give metaprotocol peers the access rights to 
modify some of the data affecting other protocol peers within the same wrapper. 
These access rights are needed for installing new protocols. 

2.2.2    Shared Data 

Most protocols have state. In the Transmission Control Protocol (TCP)[Tan89], for 
example, each protocol peer must maintain the status of connections to other TCP 
peers. This state is local to each protocol peer. 

If a wrapper is engaged in several protocols simultaneously, the peers for these pro- 
tocols are likely to need to share data. This shared data differs from the local state 
of each protocol peer and it is often global to all protocol peers in a wrapper. The 
shared data includes: 
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• Information about other hosts and other wrappers. For example, the wrapper 
should maintain information about which remote hosts have failed. If a peer 
for one protocol has determined that a host has failed then this information can 
be shared with every other protocol peer that interacts with the failed host. 

• Interconnections between different protocol peers in the same wrapper. For 
example, protocols are commonly layered (e.g., TCP over IP), so a peer for a 
lower layer protocol would be connected to a peer for a higher layer so that data 
can be passed from one to the other. This information about interconnections 
between peers needs to be global because metaprotocols may need to change 
the connections when installing new protocols. 

• Protocol code and properties. This data must be accessible to metaprotocols 
in order that new protocols can be installed correctly. 

• A real time clock. This data structure is shared by all real time protocols. 

• Access rights data telling which peers may access which shared wrapper data. 
This access rights data needs to be global because metaprotocols may need to 
change it. 

2.2.3    Adapters 

Adapters connect the wrapped component to the wrapper. They provide the interface 
that the component expects, so that even if the component is legacy software it can 
be wrapped and still continue to function normally. 

Because an adapter provides the interface the component expects, adapters must be 
specialized for particular components. For example, if a component expects to com- 
municate using Unix sockets then the adapter must provide a Unix socket interface. 
If a component expects to communicate using DOS interrupts then the adapter must 
provide a DOS interrupt interface. There is no universal adapter. 

Inside the wrapper, however, the adapter provides standard services. It must respond 
to requests from metaprotocols to switch between communication channels. It must 
do this switching in a way that preserves the semantics of the communication chan- 
nel expected by the component. For example, if the channel needs to be reliable 
and sequenced, then the adapter must ensure that no data in the channel is lost or 
reordered during a switch between protocols. 

Figure 2.1 shows the structure of a wrapper. The component being wrapped is shown 
in the upper left. In this case the wrapper needs to provide only a single communi- 
cation channel for the component. The adapter allows the wrapper to switch from 
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using the communication protocol on the left to using the communication protocol on 
the right instead. The switching is under the control of a metaprotocol, shown in the 
center. Also, a single coordination protocol (e.g., for clock synchronization among 
many wrappers) is shown on the right. Data that is shared between many protocols 
is shown in the upper right. 

2.3    Wrapper Protection Mechanisms 

A system that can download new code while running exposes itself to possible damage 
from that code. Downloaded code can cause some or all of the following kinds of 
damage: 

• preventing the system from completing its tasks; 

• making unexpected use of the system's functions; 

• disclosing the system's data or code; 

• corrupting the system's data or code. 

Any of these kinds of damage could cause a system to behave incorrectly. 

Downloaded code may cause damage either accidentally or maliciously. Accidental 
damage happens when code fails to perform as designed, because of programming 
mistakes. Malicious damage happens when code is designed for sabotage. A system's 
protection mechanisms should counter, if possible, both the threat of accident and 
the threat of malice. 

The wrappers described in this chapter can download new code and must prevent 
damage from that code if they are expected to run continuously and autonomously 
for long periods of time. If possible, all damage should be prevented. If that is 
not possible, damage should be confined in some way by the wrapper protection 
mechanisms. 

This section describes alternative approaches to wrapper protection. First, we de- 
scribe the usual approaches to protection and the unusual protection needs of sys- 
tems that download code. Then we classify the alternative protection mechanisms 
that satisfy those needs. Finally, we discuss these protection mechanisms as they 
would be implemented in Java. 
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2.3.1    Background 

The threat to a system from downloading untrusted code is essentially the same as 
the threat faced by multiprogram operating systems that run untrusted programs: 
different programs running concurrently may interfere, and untrustworthy programs 
may interfere destructively. Therefore techniques used for protection in operating 
systems may also be useful for systems that download untrusted code. 

Operating systems have countered the threat of program interference in a variety 
of ways. The most common way is to construct a reference monitor that prevents 
unauthorized interference between programs [And72]. The reference monitor allows 
only limited forms of program interaction and prohibits the rest. For example, two 
programs may be authorized to share a file but be prohibited from overwriting each 
other's code. A reference monitor makes its protection uncircumventable by ensuring 
that no set of authorized actions can enable unauthorized actions. For example, 
reference monitors usually prohibit themselves from being modified. 

Reference monitors use two different kinds of protection mechanism. 

1. With access control, a reference monitor rejects unauthorized requests to use 
resources. For example, if a program requests to open a file the request may be 
denied if it has not been given permission to access the file. 

2. With visualization, a reference monitor makes unauthorized resources invis- 
ible, i.e., a program may be unable even to supply a name for the resource. For 
example, virtual memory allows a program to access any memory it can supply 
a name for (i.e., the virtual memory address), but other memory may be un-> 
nameable (i.e., physical memory addresses that are outside the virtual address 
space). 

These two kinds of protection mechanism are often used in complementary ways. For 
example, virtual memory can be used simultaneously to make another program's code 
invisible while permitting selective sharing of that program's data. The protection of 
the code depends on virtualization while the protection of the data depends on access 
control. 

Historically, most reference monitors have used hardware mechanisms for protection. 
To implement access control, hardware mechanisms such as traps and exceptions 
are used to return control to the reference monitor when access control decisions 
are needed. To implement virtualization, hardware address translation is used to 
implement virtual memory and hardware support for threads is used to create a 
virtual processor for multiple threads running on a single physical processor. 
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Hardware-Independent Protection 

Like an operating system, a system that downloads code can also implement a refer- 
ence monitor using hardware mechanisms. Unlike most traditional operating systems, 
however, there are two reasons not to use hardware mechanisms for protection: 

1. Hardware protection mechanisms are, of course, hardware-dependent and there- 
fore some access restrictions on downloaded code will be nonportable. For ex- 
ample, one hardware architecture may support read-only access while another 
may support all-or-nothing access to memory segments. For another example, 
access control that depends on the segmented virtual memory of one processor 
may not be easily translated to another architecture that uses paged virtual 
memory. Because downloaded code cannot (normally) install new hardware at 
runtime to get the protection it needs, a protection mechanism that did not 
depend on hardware at all would be preferable. 

2. Hardware protection mechanisms, while very efficient in controlling access, can 
have performance costs. These performance costs are paid during the man- 
agement of hardware access control, i.e., checking of access rights, initializing 
the hardware protection mechanisms, and switching between contexts that have 
different access rights, rather than during the actual accessing of the protected 
objects. The management cost rises as the number of objects to be protected 
gets larger and the largest costs are paid for access control to very fine-grained 
objects. While this overhead cost for access control is not unique to hardware 
mechanisms, other kinds of protection that reduce this cost are preferable. 

A designer can overcome the lack of portable hardware protection mechanisms in one 
of two ways: 

1. The hardware mechanisms can be wrapped with a software layer to provide 
a standard interface. This approach is used by portable operating systems 
such as Unix[HS87]. Unfortunately this approach will not work on hardware 
architectures that have no protection mechanisms or mechanisms that are too 
limited. Such architectures are increasingly rare in general-purpose computers 
but can be found more commonly in embedded systems hardware. 

2. No hardware mechanisms will be needed if the system runs only software that 
can be trusted not to perform unauthorized operations. 

In this section we are particularly interested in designs that use no hardware pro- 
tection and in which all software is trusted not to perform unauthorized operations. 
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This solution can be made portable if software is written in a machine-independent 
language and if programs written in that language can be analyzed at compile-time or 
download-time to determine whether unauthorized operations might be performed. 
This solution is also efficient because the costs of protection are paid at compile-time 
or download-time rather than at runtime2. This solution is also timely because it is the 
approach to security used for Java code that is downloaded over the Internet[Sun95]. 

Historically, protection without hardware enforcement has been considered imprac- 
tical and this objection is still raised today for Java-based systems. The reasoning 
behind this objection is as follows. If hardware protection mechanisms are not used, 
then all code that runs in a system must be trusted to make only authorized use of 
resources. For practical purposes, and certainly for code downloaded at runtime, this 
implies that the code's trustworthiness must be verified without human intervention. 
This automatic verification of code poses two practical problems: 

1. The property to be verified is typically undecidable. In other words, no au- 
tomatic procedure can correctly determine whether the code is trustworthy or 
untrustworthy in every case. 

This problem can sometimes be handled by erring conservatively: the auto- 
matic verifier correctly identifies all untrustworthy code but may incorrectly 
reject some trustworthy code. The practical problem then becomes whether 
the verifier's rejection rate is too high. 

2. It is difficult to show that the verifier is uncircumventable. For example, pro- 
tection in the Burroughs 6700 depended on trusted compilers that accepted 
only input in a high-order language and emitted only code verified not to make 
unauthorized accesses. One published study showed the ease with which this 
protection scheme could be circumvented[W+81]. 

Java and some other modern programming languages base protection on type-safety. 
The type-safety property limits how one part of a program can interact with another 
and therefore is a kind of protection. Automatically verifying type-safety has been 
shown to be practical and useful for detecting errors in ordinary programming. 

We will answer the following questions in later sections: 

• can type-safety form the basis for more specialized kinds of protection needed 
in complicated systems? 

• can type-safety protect against malicious programming? 
2 Compile-time analysis can have runtime costs if the software must be organized in an inefficient 

way to permit the analysis. We are assuming that these costs are insignificant. 
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• can Java be used for protection within a wrapper 1 

2.3.2    Protection in Typesafe Object-Oriented Systems 

This section summarizes the concepts underlying object-oriented systems, protection, 
and type-safety. It relates some of these concepts. It introduces terminology that will 
be used throughout later sections. 

Objects 

An object-based system is organized as a collection of objects, each object of which 
is defined by the set of operations that it implements[Boo94]. An object, A, in an 
object-based system may invoke an operation implemented by another object, B, in 
which case A is called a client of B. Objects A and B may be different or identical, 
i.e., A is potentially the same object as B, in which case it can invoke one of its 
own operations and be its own client. Very complicated software architectures can 
be organized as object-based systems and many have been. 

Each operation takes a set of parameters as input and returns a set of values as 
output. Some or all of the parameters and return values may be objects. 

Each object, parameter, and return value in an object-based system belongs to one 
or more types. Then an operation can be partly described by its signature, which is 
the name of the operation along with the types of the parameters it expects as input 
and the types of the values it is expected to return. Two objects of the same type 
implement operations with the same signatures. 

The set of signatures of a type is called the type's interface. If type A includes every 
signature of type B (and possibly others) then A is called a subtype of B. 

A class is a particular implementation of a type. A type may have more than one 
class that implements it. Many different objects can be instances of a class, in which 
case they share the same implementation. 

An object-oriented system is an object-based system with inheritance. One class, A, 
can inherit the implementation of a type from another class, B, and possibly extend 
that implementation. In this case A is called a subclass of B. 

An object-oriented language is used to describe object-oriented systems. Java, for 
example, is a full object-oriented programming language offering classes, inheritance, 
and type interfaces[AG96]. 
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Type-Safety 

An invocation of operation O is called typesafe if the parameters supplied by the 
client and the return values supplied by the object each are of the types specified in 
O's signature. A system is called typesafe if every operation that can be invoked in 
any run of the system is typesafe. 

The type-safety of a system can be deduced from a description of that system in 
an object-oriented language if the description contains enough information about the 
types of individual objects. If type-safety can be verified in this way, checking for 
type-safety of individual operation invocations can be avoided at runtime. 

Security Policies 

A security policy is a statement of a system's protection goals. The security policy 
typically tells what is authorized in the system and what isn't. Subjects in the policy 
are active agents that can perform operations on objects. The policy defines the 
access rights, i.e., which subjects are authorized to carry out which operations on 
which objects. 

How can a security policy, expressed in terms of subjects, objects, and operations, 
be applied to a system described in an object-oriented language? It is obvious and 
natural to make the following identifications: 

• The objects protected by the security policy are the objects described by the 
language. 

• The operations governed by the security policy are the operations on objects 
described by the language. 

What are the subjects of the policy? The most natural answer is: 

• The subjects given access rights by the security policy are a subset of the ob- 
jects described by the language. The subjects are viewed as independent agents. 
For example, the agents may run concurrently as separate threads of compu- 
tation but this is not necessary. These agents access resources during their 
computation, and only some of the potential accesses are authorized. 

This answer most resembles access control in operating systems, in which access rights 
are assigned to threads. 
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There are two common alternatives for implementing protection in operating systems: 
capabilities and access control lists (ACLs). Each alternative has been implemented 
using hardware support. The following sections will show that each alternative can 
instead be implemented without hardware support, in a typesafe object-oriented sys- 
tem that depends only on compile-time verification for protection. 

2.3.3    Capabilities 

A capability is a reference to an object that also carries access rights for that object. 
The reference will be expressed in some, language, e.g., an object-oriented language 
such as Java. The holder of a capability has the right to access the object referred to by 
the capability. Each subject in a capability-based system possesses a set of capabilities 
that determine the subject's authority to invoke operations. The reference monitor 
in a capability-based system ensures that a subject may perform an operation on an 
object only if it has a capability for that operation and object. 

Capabilities are a virtualization mechanism (in the sense of section 2.3.1). In a 
capability-based system, not only is every capability an object reference, but the 
only object references are capabilities, meaning that if a subject does not possess a 
capability for an object then it cannot even refer to that object properly. In other 
words, the capabilities form a virtual space of names for objects. Without a proper 
name, no access is possible. 

Capability-based systems have been implemented using hardware mechanisms. A 
recent example is the IBM AS/400 architecture[Sol96]. In that architecture, pro- 
cesses can possess unforgeable hardware-enforced capabilities for a variety of system 
resources. 

Capabilities can also be implemented without hardware support. For example, a 
reference to an object in a typesafe object-oriented system is a capability. To see 
this, consider that a subject normally gets a reference to an object in one of these 
ways: 

• by creating a new object and a new reference to it; 

• by accessing global data; 

• by being passed the reference as a parameter of an operation; 

• by being returned the reference as a value of an operation. 

Each of these ways can be thought of as an authorized means for transferring access 
rights along with the object reference. The reference is a capability because it can- 
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not be gotten in any unauthorized way, i.e., other than the ones listed above. The 
type-safety property prevents new references from being generated in other ways, for 
example 

• by converting a random integer into a reference; 

• by "incrementing" a reference to point to other memory, as though it were an 
integer. 

Typesafe operations that have these effects are not (normally) supplied in an object- 
oriented language. Therefore, a subject can get only the capabilities for which it is 
authorized. 

The problem with this simple reference-as-capability scheme is that it offers too little 
control over transferring access rights. When a subject gets an object reference, it 
gets access rights to all that object's operations, including ones that return other 
capabilities. Better would be a mechanism for restricting the access rights that go 
with a reference. 

Typesafe object-oriented languages can be used to limit the access rights that a 
subject has to a referenced object. The trick is to use language features to encode 
the access rights. Here are two basic schemes for limiting the access rights subject S 
has to the operations of object O, which is an instance of class C: 

1. Capability Interfaces: In this scheme the access rights are encoded as an 
interface to a type in an object-oriented language. Suppose that interface I 
includes some subset of the signatures implemented in class C. Then C imple- 
ments the type of I. If a subject has a reference to an instance of I, say object 
O, then it can invoke only those operations in I, even though O implements 
all of the operations in C. In this scheme the interface serves as a capability 
because access to object O is limited. 

Figure 2.2 shows two clients invoking operations on an object through two 
different capability interfaces. One client holds a capability that allows access 
to three of the four methods. The other client holds a capability that allows 
access to only two of the four. 

2. Capability Objects: In this scheme the access rights are encoded as an object, 
separate from the object O. Suppose that object Q defines some subset of the 
signatures implemented in class C. Suppose Q implements each of its operations 
by invoking the corresponding operation on an instance Q' of class C. Then, 
just as in the Capability Interfaces scheme, a subject that has a reference to 
Q can invoke only those operations defined by Q and cannot invoke any other 
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operations implemented by Q'. In this scheme the object Q serves as a capability 
for Q'. 

Figure 2.3 shows two clients invoking operations on an object through two 
different capability objects. Each client holds a different capability. When an 
operation is invoked on a capability object the invocation is passed through to 
be invoked on the actual object. 

Each of these two schemes for implementing capabilities in a typesafe language has 
advantages over the other. 

• The Capability Interfaces scheme is very efficient in both space and time. The 
structures used for protection, programming language interfaces, are needed 
only at compile time. In principle, these structures need not take any space or 
time in a running system, In practice, depending on how the language is imple- 
mented, they may take a small amount of space and time but these amounts 
should be negligible. Therefore the Capability Interfaces scheme is an ideal way 
to get protection with little or no runtime cost. 

• The Capability Objects scheme is very flexible. Because the structures used for 
protection are programming language objects, they can be programmed to do 
useful tasks whenever a client invokes an operation. For example, a capability 
object can be programmed to allow the first n invocations, then deny the rest. 
This example is a kind of self-destruct mechanism for capabilities. 
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This tradeoff between efficiency and flexibility is the essential difference between the 
two capability schemes. 

The next two sections discuss how the Capability Interfaces and Capability Objects 
schemes can be implemented in Java. It will become clear that, in Java, the Capabil- 
ity Interfaces scheme has an additional drawback relative to the Capability Objects 
scheme: it is circumventable unless a more conservative model of type-safety than 
Java's is enforced. Details of the Java language will be introduced as they are needed 
in the next two sections3. 

Capability Interfaces Using Java 

Suppose that some service, internal to the wrapper, needs protection. For example, 
the wrapper will offer a host information service. This service keeps information about 
remote hosts and shares this information among protocol peers within the wrapper. 
Some peers will be trusted to update the host information but other peers will not 
be so trusted. To ensure that the host information service provides trustworthy 
information to all protocol peers the service must be protected from modification by 
the untrusted peers. 

Suppose that the host information service is implemented by a Java class: 

class HostlnfoService 
3Some of the Java details may be specific to Java version 1.0.2. 
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{ 
boolean isAlive (HostAddress addr) { ... } 
void recordLife (HostAddress addr, boolean alive) { ... } 

} 

Hostlnf oService is the name of this Java class. The class has two methods, isAlive 
and recordLife. A method is the Java term for an object-oriented operation. The 
first method takes a HostAddress as a parameter and returns a boolean value. The 
value returned by isAlive tells the state, alive or dead, most recently detected for the 
host at address addr. The second method takes HostAddress and boolean param- 
eters and returns no value (i.e., void). This recordLife method is used by trusted 
protocol peers to set the state of the remote host known to this host information 
service. For example, after a peer detects that some host at HostAddress instance 
h has failed it would make the following invocation on some instance serv of class 
HostlnfoService: 

serv.recordLife (h, false); 

In Java, the object of the operation is written first, then the method being invoked, 
then the parameters of the method. 

This Java description of the host information service is oversimplified for the purpose 
of exposition. The actual host information service in the wrapper framework will keep 
more information about each remote host than the single boolean value shown here. 
In fact, the host information service may need to be extended at runtime to allow 
new protocols to be downloaded, and this possibility will be discussed in section 2.4. 

To protect the host information service, the wrapper framework will create a single, 
private, instance of the Hostlnf oService class. The wrapper framework will itself 
be a unique instance of a class, and the declaration of that class will look something 
like this: 

class WrapperFramework 

{ 

private HostlnfoService theHostlnfoService = 

new HostlnfoService (); 

The Java code shown declares a single variable, theHostlnfoService, which is a 
newly created instance of the class HostlnfoService declared previously. The Java 
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keyword private means that the variable theHostlnf oService cannot be named 
by other classes. In particular, it cannot be named within classes that implement 
protocols and therefore is not accessible by those protocols unless a reference to the- 
HostlnfoService is supplied by the wrapper framework. This private variable cannot 
be named even if code in some other class holds a reference to the WrapperPrame- 
work. This constraint on the visibility of variables in Java is a means of protection 
enforced by the language above and beyond the protection offered by type-safety. 

To make the host information service available to protocols the wrapper framework 
will supply a capability for the service rather than the service itself. For example, the 
wrapper framework may choose to give an untrusted protocol a read-only capability 
for the service. In the Capability Interfaces scheme, read-only access rights would be 
defined by an interface that declares only the isAlive method: 

interface ReadOnlyCapability 
{ 

boolean isAlive (HostAddress addr); 

} 

And in this case the service implements the interface: 

class HostlnfoService implements ReadOnlyCapability 

{ 
public boolean isAlive (HostAddress addr) { ... } 
public void recordLife (HostAddress addr, boolean alive) { ... } 

} 

The Java keyword public indicates here that the methods are visible in all classes. 
Methods must be public if they implement signatures in a Java interface. 

A protocol peer running in the wrapper may be an instance of a protocol class such 
as this one: 

class UntrustworthyProtocol 

{ 

void initialize (ReadOnlyCapability capa, ...) { ... } 

This protocol has a method, initialize, that is given a capability by the wrapper 
framework. The capability gives the protocol read-only access to the host information 
service and no other rights. 
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Is this capability-based protection circumvent able? Unfortunately, in pure Java, it is. 
Java allows type-conversion operations, called casts, that can be used to coerce one 
type into another, and using a cast an interface can be coerced into an object having 
the type it protects. For example, in the UntrustworthyProtocol, 

void initialize (ReadOnlyCapability capa, ...) 

{ 
HostlnfoService serv = (HostlnfoService) capa; 

serv.recordLife (...); 

} 

This code shows the initialize method casting the capability interface into a direct 
reference to the protected service, then invoking an operation for which it is not 
authorized. Java checks at runtime that such casts do not violate type-safety. In this 
case, because the capa parameter to the method really refers to a HostlnfoService 
object, the cast will preserve type-safety. But it is not secure. 

The Capability Interface scheme can be made noncircumventable by augmenting 
Java's type-safety verification with additional checks. Suppose that the goal is to 
protect some set of Java classes using the Capability Interface scheme. We will refer 
to these classes and instances of them as protected*. One must check that 

• no untrusted program may cast an object of a Capability Interface type into an 
object of a protected class; 

• no untrusted program may cast an object of a Capability Interface type into an 
object of a subtype interface. 

The first of these checks prevents direct access to the underlying service being pro- 
tected. The second of these checks prevents a program from increasing the set of 
access rights it holds by converting an instance from one interface into another inter- 
face that allows more methods to be invoked. 

These additional checks can be implemented in an automatic verifier. This verifier 
will be called the Capability Verifier in this report. The Capability Verifier augments 
the Java Verifier that is part of the standard Java environment. Together, these two 
verifiers make the Capability Interfaces scheme uncircumventable. 

4Not to be confused with the Java keyword of the same name, which always appears in boldface 
in this report. 
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Capability Objects Using Java 

The host information service can also be protected with Capability Objects instead 
of Capability Interfaces. In this alternate scheme, one creates a class of capabilities: 

class ReadOnlyCapability 

{ 
private HostlnfoService reference; 

ReadOnlyCapability (HostlnfoService ref) { reference = ref; } 

boolean isAlive (HostAddress addr) 

i 
return reference.isAlive (addr); 

} 
} 

Each object of this class contains a reference to another object of the protected 
HostlnfoService class. The reference is private and so is inaccessible from other 
classes. The reference can only be set once, when the capability is created, by the 
constructor method ReadOnlyCapability. Every invocation of the isAlive method 
is then delegated (i.e., forwarded) to the method of the same name in the protected 
object. 

Note that the Capability Objects scheme implemented in Java differs from the Ca- 
pability Interfaces scheme in these ways: 

• One Java capability object must be created per object to be protected. These 
capability objects take space, and delegating method invocations takes time. 
Typically the space and time taken will be greater than in the Capability In- 
terfaces scheme. "^^ 

• Java type-safety is uncircumventable protection. Untrustworthy code that tries 
to coerce an object of the ReadOnlyCapability class into an object of the 
HostlnfoService class will cause a runtime error. No Capability Verifier is 
needed to enforce this protection, unlike in the Capability Interfaces scheme. 

Because each Capability Object is an instance of the generic Java class called Object, 
each Capability Object will inherit methods defined in the Object class. These meth- 
ods may allow, for example, an object to be cloned or a string representation of a hash 
code for the object to be returned.  These methods do not seem to pose a security 
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risk in the Capability Objects scheme but for extra safety they can be overridden in 
any Capability Object class by new methods that do nothing. 

Metaobject Capabilities 

Neither the Capability Interfaces nor Capability Objects schemes explicitly protects 
a system's metaobjects. This section discusses how those schemes can be extended 
to gain this protection. 

A metaobject is an object that represents an entire class of objects. For example, the 
Host Address class used in the previous sections contains a set of instances, each of 
which is an object used as an address. If an operation were to affect every address in 
that set then that operation could be thought of as an invocation on a unique object, 
the metaobject, representing the class of all addresses. If, say, the metaobject stores 
a list of all addresses in the class then the operation of sorting the addresses would 
be an invocation on the metaobject. 

Creation of new objects is the one metaobject operation that every system must have. 
Object creation cannot be an ordinary operation because the object it affects does 
not exist before the operation happens. Object creation is normally implemented by 
the metaobject for the class of the new object. 

If the metaobject for, say, the HostAddress class is not protected then untrusted 
programs will be able to create new HostAddress objects at will, sort the host ad- 
dresses, or invoke any other metaobject operation. In some cases it will not be a 
problem if untrusted programs can create their own instances of a protected class: 
then instances created by trusted clients will be handled in a trustworthy way by 
giving only capabilities to untrusted clients while instances created by untrusted pro- 
grams might be handled in any way whatsoever. Whether this freedom is a problem 
depends on the particular application. 

In general, metaobjects can be protected using the same techniques as ordinary ob- 
jects. In other words, to protect the metaobject for a class, just use either the Ca- 
pability Interface or Capability Object scheme. Direct references to the metaobject 
are prevented by type-safety. In order for a client to access a metaobject operation 
it must hold a capability for that operation. 

In Java, though, neither the Capability Interface nor Capability Object scheme can 
be used immediately to protect metaobject operations, because Java provides no ex- 
plicit metaobjects. Instead, Java provides special language constructs for metaobject 
operations of a class C: 

• Most metaobject operations are written as methods of C, prefixed with the 
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• 

keyword static. These static methods are available to every object of the 
class without restriction. They may also be available to other classes even if no 
object of class C exists. 

The metaobject operation that creates a new object of class C is written with 
another special construct, called a constructor, and is also part of class C. 

The Capability Interface scheme cannot protect these metaoperations because Java 
interfaces are not permitted to describe either static methods or constructors. In 
Java, access to static methods and constructors is limited only by the language's 
restrictions on the visibility of names and not by type-safety. The Capability Object 
scheme cannot be used either because there is no explicit metaobject for the capability 
object to delegate operations to. 

A crude way to protect static methods and constructors in Java is by using the 
language's package mechanism. This approach does not depend on type safety at 
all. For example: 

package ProtectedStuff; 

class ProtectedService { 

static void metaOperation ( ... ) { .... } 

} 

public class Capability { 
private ProtectedService reference; 
Capability 0 { reference = new ProtectedService (); } 

public class MetaCapability { 
MetaCapability 0 {} 

public void metaOp (...){ 
ProtectedService.metaOperation (...);} 

public Capability create 0 { return new Capability 0; } 

} 

This Java code is all written within a package called ProtectedStuff, which means 
that code outside this package cannot name classes and methods in the package unless 
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they are declared public. In particular, neither a ProtectedService object nor the 
metaOperation can be named outside the package. However, both a Capability 
for the service and a MetaCapability for its metaobject operation can be named 
outside. So if code outside the package is given a MetaCapability instance then 
it can invoke the operation metaOp, which in turn invokes the protected metaobject 
operation. Such a MetaCapability instance also authorizes a client to invoke create, 
which creates a new instance of ProtectedService and returns a Capability Object 
for that instance. 

Could code outside the package construct its own MetaCapability and thereby get 
unauthorized access to the protected service's meta-operations? This loophole has 
been closed in the example by giving the MetaCapability class an explicit construc- 
tor, also called MetaCapability, that cannot be named outside the package. Note 
that the MetaCapability constructor has not been declared public. If it had been 
declared public it would have been visible outside the package. If it had not been 
declared at all the Java language would have implicitly generated a constructor and 
that implicit constructor would have been public by default. As shown, only clients 
within the package can construct a new MetaCapability. 

While this example shows that one can protect Java meta-operations, the protection 
mechanism has these drawbacks: 

• The Capability Interface scheme cannot be used. 

• The objects to be protected must be confined to a set of protected Java packages. 
This makes the Java package construct do double-duty, first for grouping of 
related classes and second as a protection mechanism. While these duties may 
be consistent in some cases, in general they won't be. This fact adds another 
constraint to the system's design and may be cumbersome. 

• To prevent untrustworthy software from adding its own code to the ProtectedStuf f 
package a Capability Verifier must be implemented that prevents this possibil- 
ity. 

A more flexible solution is to construct a Java object for each class to be protected. 
These Java objects serve as explicit metaobjects. Then protection is arranged by the 
following steps: 

1. Every meta-operation to be protected is written as an ordinary method of the 
metaobject class rather than as a static method of the class being protected. 

2. Either the Capability Interface or Capability Object scheme is used to protect 
the metaobject. 
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If creating new objects of the protected class is to be a protected operation 
on the metaobject the Capability Verifier must be enhanced to prevent this 
protection from being circumvented. In addition to the restrictions previously 
discussed in section 2.3.3 for the Capability Interface scheme these restrictions 
must also be enforced: 

• No untrusted program may directly invoke the constructor for a protected 
class. 

• No untrusted program may invoke the newlnstance method of the Java 
class Class to make new instances of a protected class. 

The first restriction can be checked automatically. The second restriction is un- 
decidable in general because the Java Class given to the newlnstance method 
is a variable whose value may not be decidable at compile-time. Stronger re- 
strictions can be checked automatically, though, e.g., preventing any untrusted 
access to newlnstance. Use of newlnstance is rare and so stronger restrictions 
may not be too strong for practical application. 

The previous example can be implemented without using Java packages or static 
methods as follows: 

class ProtectedService { ... } 

class Capability { 
private ProtectedService reference; 
Capability 0 { reference = new ProtectedService 0; } 

class MetaObject implements MetaCapabilityl, MetaCapability2 { 
public Capability create () { return new Capability 0; ... } 

public void metaOperation (...){...} 

} 

interface MetaCapabilityl { 
Capability create (); 

} 
interface MetaCapability2 { 

void metaOperation ( ... ); 

} 
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Here the static method metaOperation has been removed from the ProtectedService 
class and placed entirely within the MetaObject class. To access the metaOperation 
a client must have a MetaCapability2. Both the ProtectedService object and the 
MetaObject are protected, the former using the Capability Object scheme, the latter 
using the Capability Interface scheme. Either scheme, however, could have been used 
at either the object or the metaobject level. 

The Capability Verifier ensures that the meta-capabilities cannot be circumvented. 
It also ensures that untrusted programs cannot construct their own instances of any 
of the three classes. Thus the only way an untrusted program can create a new 
ProtectedService is by being given a MetaCapabilityl. 

This example assumes that every MetaObject will be constructed by a trusted pro- 
gram. If it is necessary instead to give an untrusted program a limited access right to 
construct its own MetaObject, then a meta-meta-object could be implemented using 
the same techniques. Fortunately this situation is not common. 

2.3.4    Access Control Lists 

An access control list (ACL) is a list of access rights for an object. Each access 
right tells which subject can access the object using which operations. The reference 
monitor in a system using ACLs will, for each access to a protected object X, search 
the ACL for X looking for the access rights needed by the subject. If the rights are 
not found, the reference monitor will deny the access. 

In one sense, ACLs are analogous to capabilities. Both ACLs and capabilities store 
the complete information about access rights. An ACL stores the access rights for 
a particular object and a capability stores the access rights for a particular subject. 
The collection of ACLs for every object in a system contains the same information 
as the collection of capabilities for every subject in the system but organizes that 
information in a different way. 

In another sense, though, ACLs differ greatly from capabilities because the protection 
they offer is enforced differently. ACLs are an access control mechanism, while capa- 
bilities are a virtualization mechanism (see 2.3.1). The ACL protection is enforced 
by trusted code that checks access rights; the checking mechanism is typically cen- 
tralized. Capabilities, on the other hand, are decentralized, and, so long as they are 
unforgeable, can be handled securely by untrusted code. One advantage this means 
for ACLs over capabilities is that a centralized reference monitor can much more eas- 
ily control the propagation of access rights from one subject to another using ACLs; 
capabilities, while they cannot be forged, can be easily copied. 
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One can implement a reference monitor for ACLs using hardware mechanisms. To 
use a current example: the Intel 80386 chip[Int90] (and all its successors, including 
the Pentium chip) has several different operating modes corresponding to different 
levels of protection. Some 80386 instructions can only be successfully executed at the 
highest level of protection. Transitions between different protection levels are carefully 
controlled. These features make it possible to implement a reference monitor, running 
at the highest level of protection, that controls access by untrusted programs to the 
protected instructions and thereby controls direct access to shared resources such as 
memory and external devices. Such a reference monitor can grant or deny indirect 
access based on an ACL lookup. 

One can also implement a reference monitor for ACLs without hardware mechanisms 
using a typesafe object-oriented language with the following steps: 

1. Create a unique object to implement the reference monitor. This object can be 
made globally accessible. 

2. Store all ACL data in the reference monitor object. 

3. Store all references to other protected objects in the reference monitor. The 
reference monitor will be designed to keep these references private, i.e., it will 
not give them out to untrusted programs. Because untrusted programs in a 
typesafe language cannot generate references to existing objects (i.e., these ref- 
erences are capabilities, see section 2.3.3) these objects will remain accessible 
only to the reference monitor. 

4. Provide a reference monitor interface that allows untrusted programs to access 
the operations of protected objects indirectly. This interface lets the reference 
monitor intercept all accesses to a protected object and to decide, based on the 
ACL for that object, whether the access should be allowed. If the access is to 
be allowed, the reference monitor itself invokes the operation on the protected 
object and returns the result to the untrusted client. 

In order for the reference monitor to decide whether to allow a request for access it 
must know both the subject and object of that request. The only way to do this in 
general is to give the identity of both subject and object as part of the request to 
the reference monitor. These identities cannot be object references, for reasons given 
shortly, but rather must be unique identifiers that the reference monitor can associate 
with an object reference. Consider the object and subject cases in turn: 

• The object of a request cannot be specified by its object reference because no 
untrusted subject has that reference - only the reference monitor does. There- 
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fore the object must be specified by a unique object ID, which the reference 
monitor can convert to an object reference. 

• The subject making a request must identify itself to the reference monitor so 
that the request can be approved or rejected based on a security policy as 
described in section 2.3.2. Suppose that the subjects are themselves objects, 
as discussed in section 2.3.2, but are not necessarily protected objects. Then 
a subject S cannot supply a reference to itself as part of the request because 
that reference might be known to other subjects which could then assume the 
identity of S and use its access rights. Therefore the subject must register itself 
with the reference monitor to get a unique, private, identifier which it supplies 
with all future requests. 

Each subject must be trusted not to divulge its unique, private, unforgeable, 
identifier. This trust can be gotten using type-safety plus other syntactic checks. 
If the type of the subject identifiers never appears in any signature except as 
a parameter used by the reference monitor for authentication, then type-safety 
guarantees that no subject can pass its private identifier to or forge the identifier 
of another subject. 

An example of this ACL scheme implemented in Java is shown in the next section. 

ACLs Using Java 

To demonstrate ACLs using Java, consider again the host information service dis- 
cussed in section 2.3.3. Suppose this service is implemented by a set of objects, one 
per remote host. The declaration of the host information might look like this: 

class Hostlnfo { 

private HostAddress addr; 
HostAddress getAddress () { return addr; } 

private boolean alive = false; 
boolean isAlive () { ... return alive; } 
void recordLife (boolean live) { ... alive = live; } 

} 

Instances of the Hostlnfo class record only the address of a host and whether that 
host has been determined to be alive. This data is private but also exported to all 
classes via accessor methods. 
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Each object of this Hostlnf o class will be given unique identifier from the following 
class: 

class ObjectID { ... } 

Each subject will identify itself to the reference monitor using its own unique, private 
instance of the following class: 

class SubjectID { ... } 

Then the reference monitor will offer a protected host information service to all clients 
via an implementation similar to the following: 

class ReferenceMonitor 

{ 
private static Hostlnfo lookup (ObjectID id) { ... } 

private static boolean hasAccessRights (SubjectID subj, 
ObjectID obj) { ... } 

public static boolean isAlive (SubjectID subj, ObjectID obj) 

{ 
if (hasAccessRights (subj, obj) 

return lookup (obj).isAlive 0; 

} 
public static void recordLife (boolean life, 

SubjectID subj, ObjectID obj) 

-C 
if (hasAccessRights (subj, obj) 

lookup (obj).recordLife (life); 

} 

The first reference monitor method, lookup, allows the reference monitor to con- 
vert an objectID to a Hostlnfo object. The second reference monitor method, 
hasAccessRights, allows the reference monitor to check whether a particular re- 
quest is authorized. These methods are private because only the reference monitor 
should be allowed to use them; if another subject could use lookup, in particular, it 
could bypass the reference monitor to invoke operations directly on objects. 
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The reference monitor then provides a public operation for every operation possible on 
a protected object, in this case the isAlive and recordLife methods (getAddress 
could have been handled similarly), but these public operations have two new param- 
eters: the subject and object identifiers. The reference monitor checks access rights 
on each request and looks up the object reference from the object identifier, using 
private operations in each case. If the subject has access rights the reference monitor 
delegates the operation to the Hostlnf o object. 

This sample code does not allow access rights to depend on which operation is being 
invoked but could be trivially generalized for this possibility. 

Note that the reference monitor in this scheme is essentially a single Capability Object 
for all the protected objects in the system. In other words, all clients can refer to the 
reference monitor but none can refer to a protected object. 

Note also how this scheme depends on type safety: the Subject ID supplied with a 
request is known only to the subject and the reference monitor and no other subject 
has typesafe operations that generate this Subject ID. 

2.3.5    Summary 

This section has shown several schemes for wrapper protection that depend on type 
safety and can be verified when code is compiled or loaded. These schemes do 
not depend at all on hardware protection mechanisms and are therefore platform- 
independent. Either access control list or capability schemes can be implemented, 
and issues specific to a Java implementation were discussed. 

2.4    Wrapper Extension Mechanisms 

A system that can download new code needs mechanisms for integrating that new 
code with the code that is already running. In general, a system can make ar- 
bitrary self-modifications when new code is downloaded. The freedom of arbitrary 
self-modification, however, is dangerous because it implies that no checking is done to 
ensure that the modifications make sense. Then even trivial mistakes in the new code 
can wreck a running system. Better would be a mechanism, or a set of mechanisms, 
for incorporating new code in a structured way. 

One of the simplest ways to add new code safely is to run it in a new thread or 
process that cannot interact with already-running threads. Then the original system 
is protected from the new code.   Unfortunately, this mechanism is too simple for 
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most practical applications because the reason for adding code is to fix or improve 
the original system and this requires that the new code interact with or replace the 
old. So more flexible mechanisms are needed. 

The wrappers described in this chapter need more complicated extension mechanisms. 
Wrappers will be upgraded by loading, installing, and using new code for protocols. 
These protocols govern the wrapper's interaction with other wrappers and system 
components, and wrapper upgrades will typically happen while some of these proto- 
cols are already in progress. When a new protocol is installed it may interact with 
already-running protocols in two ways: 

1. The new protocol may replace an earlier version of the same protocol. 

2. The new protocol may share data with other protocols, in which case the shared 
data may need to be modified for the new protocol without disturbing the 
operation of the old protocols. 

This section explores a particular extension mechanism, called dynamic extension. 
This mechanism is a natural means of extension in object-oriented systems. It is 
explained in sections 2.4.1. Specific features of dynamic extension are discussed in 
sections 2.4.2 and 2.4.3. Section 2.4.4 shows how dynamic extension interacts with the 
capability protection mechanisms of section 2.3.3. All examples used in this section 
will be written in Java. 

Other extension mechanisms are possible. In fact, any program transformation that 
might be used during the evolution of a system's design could also be used during 
the evolution of the system itself. Future versions of this report may consider other 
extension mechanisms. 

2.4.1    Dynamic Extension 

Object-oriented systems suggest a natural approach to upgrading data structures 
that are shared between new downloaded code and older code. The approach relies 
on subclassing, inheritance, and dynamic binding. In this approach, the shared data 
structures are represented originally as instances of a parent class, C. When new code 
needs to access instances of class C but with new fields or methods added, then the 
system extends the parent class C into a subclass, S, containing those new fields and 
methods. During the installation of the new code, instances of class C are converted 
to instances of the subclass S. After the conversion, both old and new code can 
operate correctly: new code will use fields and methods for subclass S while old code 
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will inherit the fields and methods it needs from class C and will continue to function 
as before the conversion. 

We call this approach to upgrading dynamic extension because it extends a system 
just as a programmer might at compile-time but instead extends it dynamically, at 
runtime. The crucial step in dynamic extension is the conversion of existing class in- 
stances to new instances of a subclass. This conversion step is not usually supported 
by object-oriented languages. It requires that the system replace every potentially 
sharable instance of the parent class C by an instance of subclass S and that ev- 
ery reference to these class C instances be modified to refer to the new subclass S 
instances. This conversion step may be costly but it can be implemented in three 
different ways. 

1. The system can search all of memory for instances and replace them. This 
straightforward approach has several drawbacks, though. First, few systems 
are built to allow such searches. For example, in the executable form of a Java 
application it may be difficult or impossible to tell whether a particular bit 
pattern represents an object reference. Only reflective[KdRB91] languages such 
as the Common Lisp Object System (CLOS)[GLS90] allow the necessary kind 
of program introspection and self-modification5. Second, a search of the entire 
memory of a large application can take a lot of time. This search operation 
is similar to garbage collection in languages such as Lisp and Java, operations 
that can often contribute to poor performance. 

2. The system may create every object to be extendable. This can be done by 
chaining: the original object holds a pointer to its first extension, which holds 
a pointer to its second extension, and so on. The main drawback of this ap- 
proach is that following a lengthy chain of pointers is an expensive operation 
for referencing a single field in an object, and a lengthy chain would result from 
repeated extensions. A lesser drawback is that the extensions are not invisible 
to the original code. In other words, a program can inspect an object to find 
out whether it has been extended or not. This unnecessary visibility follows 
from the fact that this approach duplicates the extension capability provided 
by subclassing in object oriented languages. 

3. The system may provide an extra layer of indirection for every object. This layer 
lets the system switch from an older version of an object to a newer version. In 
other words, every object reference is implemented by a pointer to a reference, 
and extension is implemented by switching pointers. This approach has the 
drawback that it takes a lot of space: one new pointer must be allocated for 
every extendable object. 

5 A recent addition to Java allows some reflection but it is not sufficient for this purpose. 
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Any of these three approaches can be used to extend a single object. Dynamic 
extension extends every object in a class. Both the second and third approaches take 
extra memory for dynamic extension because a list of references to every class instance 
must be stored in the class metaobject. The third approach will be of special interest 
later in section 2.4.4 because it works well with the Capability Objects scheme of 

section 2.3.3. 

Dynamic Extension Using Java 

To demonstrate dynamic extension using Java, consider again the host information 
service and host information type discussed in section 2.3.4. 

class Hostlnfo { 
protected HostAddress addr; 
public HostAddress getAddress  0  { return addr;  } 

protected boolean alive = false; 
public boolean isAlive  0 {  ...  return alive;  } 
public void recordLife   (boolean live)  {  ...   alive = live;  } 

} 

Instances of the Hostlnfo class record only the address of a host and whether that 
host has been determined to be alive. Unlike in section 2.3.4, this data is now 
protected which means that it can be directly accessed by subclasses and other 
classes within the same Java package, but the data is also exported to all classes via 
accessor methods. 

Suppose a new protocol needs not only the data on host liveness but also a record of 
when the host was determined to be alive (perhaps a client of the host information 
service must make a judgement of whether the liveness data is stale). Then the new 
protocol would find it convenient to record host data in the following subclass: 

class Hostlnfo.l extends Hostlnfo { 
protected Time alive_detection_time; 
public Time getDetectionTime   0  { return alive_detection_time;   } 

} 

In this subclass, all the fields and methods from Hostlnfo are reused. A new field, 
alive_detection_time, has been added and a new method, getDetectionTime, is 
included to access the new field. 
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Then each instance of Hostlnfo would be extended to an instance ofHostlnfo_l in 
the following steps: 

1. create a new Hostlnf o_l 

2. copy the data from the Hostlnfo to the Hostlnfo_l 

3. change every reference to the Hostlnfo to refer to the Hostlnfo_l 

4. destroy the old Hostlnfo 

Dynamic extension is useful in this case because the new protocol does not need a 
new representation for the existing data in Hostlnfo. The existing data was simply 
augmented with new data. Dynamic extension would be cumbersome, but still useful, 
in cases where the existing data structures must be changed rather than augmented. 
In these cases some or all of the existing methods would need to be overridden. 
Dynamic extension would be least useful in cases where the signatures of operations 
need to be changed. 

Dynamic extension in Java allows existing methods to be enhanced as well as new ones 
to be added. This option is implemented by overriding existing methods and relying 
on dynamic binding to use the new version of the method. For example, suppose 
that an existing client, written to use the Hostlnfo class, calls recordLife (false) 
when it detects that a remote host is alive. Even after dynamic extension from 
Hostlnfo to HostInfo_l this client will ignore the alive_detection_time field in 
class Hostlnf o_l because it wasn't written to use it. The recordLif e method can 
be overridden, however, to record the time at which liveness was detected in addition 
to the fact of its detection: 

class HostInfo_l extends Hostlnfo { 
protected Time alive_detection_time; 
public Time getDetectionTime   0  { return alive_detection_time;   } 

public void recordLife  (boolean live)  { 
alive_detection_time = Time.now  (); 
super.recordLife   (live); 

} 
} 

In this second version of the Hostlnfo_l subclass the recordLife method of class 
Hostlnfo has been overridden.   The new method records the current time when 
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it was called, then invokes the method it overrides in the superclass, i.e., method 
recordLif e of class Hostlnf o. 

Before dynamic extension, a client invoking recordLife on an instance of class 
Hostlnf o will get the old version of the method. During dynamic extension, every 
Hostlnfo instance is replaced by a HostInfo_l instance. After dynamic extension, 
dynamic binding (a feature of Java and other object-oriented languages) will cause 
the new recordLife method of class Hostlnfo_l to be called whenever a client in- 
vokes recordLife. This new method takes new actions appropriate to the subclass 
but also invokes the old version of the method. In this way, the dynamically extended 
objects implement new functionality but do so in a way that still satisfies invocations 
by clients that were not written to use the new functionality. 

2.4.2    Conservative Dynamic Extension 

Dynamic extension is conservative if it affects no existing client. In other words, even 
though newly downloaded clients may dynamically extend data structures used by 
existing clients, the latter will continue as though no extension had happened. 

Not every extension is conservative. In particular, an extension that replaces existing 
methods by overriding them will not be conservative if the functionality used by 
existing clients is changed. 

A dynamic extension can be verified in some cases automatically to be conservative. 
This question is in general undecidable but checking the following conditions is suffi- 
cient to prove that an extension is conservative (assuming that changes to the timing 
and performance of methods are negligible): 

• no code in the extension modifies any field in the superclass; 

• every method override invokes the overridden method in the superclass; 

• all extension code will terminate normally, i.e., no exceptions will be raised and 
it must terminate. 

The dynamic extension shown in Java in section 2.4.1 satisfies the above conditions 
and is therefore conservative. 

2.4.3    Repeated Dynamic Extension 

Over time, the instances of an original class C might be repeatedly dynamically 
extended to subclasses, Si, S2, ■ ■ ■■  These subclasses form a sequence, i.e., Si is a 
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subclass of C, S2 is a subclass of S\, and so on. 

Independent attempts to dynamically extend class C, however, need to be coerced 
into a sequence of extensions. For example, suppose new code written by one author is 
used to extend from C to Si. A second author, unaware of the extension to subclass 
.Si, writes new code to extend from C to subclass E. Class E is clearly not an 
extension of Si but needs to be made into one. 

Repeated extension is, in effect, a form of multiple inheritance. In the example just 
used, what is needed is a new class, call it S2, that inherits from both Si and E. A 
wrapper that implements dynamic extension must construct such a class 52- In the 
examples that follow, subclass 5X will be called theirs* subclass and subclass E will 
be called the second subclass. The goal is to construct a subsubclass S2 from Si and 
E. 

Repeated Extension Using Java 

Java does not implement multiple inheritance6. Therefore to coerce repeated, in- 
dependent, extensions into a sequence of extensions a mechanism outside the Java 
language must be used. The mechanism is a meta-level operation that takes Java 
code as input and produces new Java code as output. 

To use the host information example again, suppose Hostlnfo is dynamically ex- 
tended as before, making Hostlnf o_l the first subclass. Also suppose that newly 
downloaded code needs to dynamically extend Hostlnfo in some other way, such as: 

class HostlnfoWithLock extends Hostlnfo { 
protected boolean lock = false; 
public synchronized boolean Acquire  0  { 

if   (!   lock) 
{ 

lock = true; 
return true; 

} 
else 

return false; 
} 
public synchronized void Release () { lock = false; } 

} 
6 Java does have multiple inheritance of interfaces but what is needed is multiple inheritance of 

classes. 
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In this case Hostlnf oWithLock is the second subclass. This new subclass introduces 
a locking mechanism, perhaps because the new code can restart failed hosts remotely 
but it needs first to acquire a lock to warn other protocols from trying to restart the 
same host simultaneously. 

The Hostlnf oWithLock extension is handled simply by modifying the second subclass 
to be an extension of Hostlnf o_l rather than of Hostlnf o as written. Then the new, 
modified, subclass will contain both the locking data structures from the second 
subclass and the previously existing data structures inherited from the first subclass, 
Hostlnf o_l. Note that although the new class "inherits" from two parents it is a 
Java subclass of only the first subclass, and has the same name as the second subclass. 
So this class modification has the same effect as multiple inheritance without needing 
multiple inheritance as part of the Java language. 

Commutivity of Extensions 

Repeated dynamic extension shares with multiple inheritance one potential pitfall: 
different extensions may conflict with each other. A conflict arises if both extensions 
seek to modify the same field or method in different ways. Then the result of doing 
both extensions will depend on the order in which the extensions happen. A way 
must be found to identify and resolve such conflicts. 

Conflict is avoided if extensions commute. This means that the order of extensions 
does not matter because the resulting subclass will be the same in either case. For 
extensions to commute it is sufficient that: 

• The extensions introduce fields with disjoint sets of names. 

• If the extensions introduce or override a method then the extended method is 
identical in both cases. 

The above conditions for commutivity can be checked automatically and so can be 
enforced at runtime for dynamic extensions. It is not necessary to enforce commutivity 
of extensions but it is desirable in some cases. 

2.4.4    Protected Dynamic Extension 

A dynamically extendable object may need protection just like any other. This pro- 
tection has the following two goals: 
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1. The access rights to an object O held by a client after O is extended should be 
related to the access rights to O before extension. Typically the access rights 
should be unchanged by dynamic extension. 

2. The operation of dynamic extension must itself be protected. If it were not, 
then any client could extend an object, override any of its methods and subvert 
the object in any way. 

Protecting the dynamic extension operation itself is easy given the technique described 
in section 2.3.3. That technique depends on a capability scheme, enforced by compile- 
time checking, to encode access rights. Because the operation of dynamic extension 
is invoked on an entire class it is a metaobject operation and it can be protected 
by protecting the metaobject. As shown in section 2.3.3, the metaobject can be 
protected using either the Capability Interface or Capability Object schemes. 

How to protect dynamically extended objects will depend on the mechanism used 
to implement dynamic extension. Suppose object O of class C is to be protected. 
The following steps describe an economical way to combine protection with dynamic 
extension: 

1. Use the Capability Object scheme to protect objects. In this scheme a client 
can only access O indirectly via some other capability object it has been given. 
No untrusted client has direct access to O itself. 

2. Implement both creation of new instances of C and dynamic extension of C in 
the metaobject using this approach: 

• The metaobject keeps a list of all the objects and capabilities it has created 
on behalf of clients. 

• When the metaobject creates a new object it stores a reference to that 
object and returns a capability for that object to the client. 

• When the metaobject performs a dynamic extension of class C it replaces 
every object of class C with an object of the subclass S. 

3. Give the capability object for object O a new operation that will cause it to 
switch from protecting object O to protecting a new object O' of subclass S 
when class C is dynamically extended to S. So a client that holds a capability 
for O before dynamic extension continues to hold that capability after dynamic 
extension. That capability, however, has (transparently to the client) become 
a capability for object O'. 
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4. Protect the switching operation in the capability object. If the metaobject can 
cause a capability object to switch from one object to another, what prevents an 
arbitrary client from invoking that switching operation also? Use the Capability 
Interface scheme to protect the switching operation of the capability object. So 
a client is given access to an interface for the capability object rather than 
the object itself. This interface to the capability gives the client access to all 
operations except switching between object instances. 

This approach to combining protection with dynamic extension depends on the flex- 
ibility of the Capability Objects scheme. A capability object is given two roles: first, 
to protect an object of class C; second, to switch to protecting an object of subclass 
S when the metaobject is dynamically extending the class. 

2.4.5    Summary 

This section has described one mechanism by which a system can be extended at 
runtime. This mechanism, dynamic extension, is built using standard features of 
object-oriented languages: subclassing, inheritance, and dynamic binding. Dynamic 
extension can be applied repeatedly to the same class, and it can be combined with 
the Capability Object scheme for protection. Dynamic extension can be implemented 
in Java, but some operations outside the Java language are necessary. 
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Chapter 3 

Applications 

The previous chapter presented the design of a wrapper framework. Most aspects of 
that design have been implemented under this project. 

This chapter discusses applications that were made of the wrapper framework. Most, 
but not all, of these applications are protocols that can be run within a wrapper. 

The implementation of the framework and of applications that use it were written in 
Java and run on a network of Solaris workstations. The version that was delivered 
under this project works with the Java Development Kit (JDK) 1.1.7. 

The rest of this chapter is structured as follows. Section 3.1 lists the data structures 
created for use by protocols when a wrapper starts running. These structures are 
used by various applications. Section 3.2 explains the protocols, and section 3.3 the 
metaprotocols, that were implemented for this project. Section 3.4 discusses two 
examples of applications that must cooperate by sharing wrapper data structures. 
Finally, section 3.5 presents an application in which preexisting code was wrapped. 

3.1    Shared Data Structures 

At startup, the wrapper creates the following data structures: 

• a clock variable that records the difference between the time on the host system's 
clock and the "true" time, as determined by synchronizing with the clocks in 
other wrappers; 

• a list of hosts known to this wrapper; 
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• a list of wrappers known to this wrapper; 

• a list of protocols known to this wrapper, including the code that implements 
each role in the protocol; 

• a list of the protocol peers, i.e., instances of protocol roles running in this 
wrapper; 

• a list of non-protocol tasks running in this wrapper; 

• a list of communication ports known to this wrapper; 

• a history of events logged by peers and tasks in this wrapper. 

These structures are used by the protocols described in the next section. 

3.2    Protocols 

The wrapper framework is intended to support the operation of many concurrent 
protocols. These protocols form an interface to the component being wrapped, and 
in some cases form part of the application itself. 

To show the flexibility of the wrapper framework, we implemented a variety of proto- 
cols, described in this section. Each protocol is implemented in Java, although some 
make use of preexisting facilities that may be written in other languages. 

3.2.1    Ping 

The Ping protocols collect information about the status of Internet hosts. They are 
simple protocols, designed to demonstrate protected dynamic extension in a simple 
context. They use the standard Internet Control Message Protocol (ICMP)[Pos81], 
also called "ping", to gather information. 

There are two protocols: 

1. The Ping Seek protocol searches for Internet hosts that respond to ICMP pings. 
The protocol chooses Internet addresses randomly, pings each address (using 
ICMP), and if the remote host responds, it is added to a list. 

2. The Ping Visit protocol periodically pings each host on the list created by Ping 
Seek, adding the result to previous data collected about that host. 
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The Ping Seek and Ping Visit protocols each consist of a single role. These proto- 
cols are unusual in that the peers that implement these roles interact with no other 
wrapper peers: they just use ICMP to interact with Internet hosts directly. 

Ping Seek and Ping Visit share a list of objects, each object of which holds data 
about one host. For Ping Seek, these objects need not have any internal structure: it 
is enough to record that a host exists and responded to a ping. Ping Visit, however, 
needs each object to have structure for recording statistics about when and how often 
a host failed to respond to pings. Before Ping Visit can be started, therefore, the 
shared list of host objects must be dynamically extended to have this structure. After 
the list is dynamically extended, Ping Seek and Ping Visit have different capabilities 
for accessing the list: Ping Seek needs only a capability to create new objects on the 
list; Ping Visit needs capabilities to look up hosts and add data to the objects that 
represent them. 

Protected dynamic extension is demonstrated by the following scenario: 

1. Create an empty list of host data objects. 

2. Start Ping Seek, giving it a capability to extend the list. 

3. Dynamically extend the list, adding structure to each object. 

4. Start Ping Visit, giving it a capability to access the new structure. 

Ping Seek will continue to access the list, unaffected by the replacement of the list 
with a new, dynamically extended list with new structure and new capabilities for 
accessing that structure. 

3.2.2    Distributed Logging 

The Distributed Logging protocol creates a single log of the activities of many wrap- 
pers distributed across a network. In this protocol, events recorded by each wrapper 
are sent to a central location and interleaved there with events recorded by other 
wrappers. The events are interleaved according to the time they arrive at the central 
location. 

Distributed Logging was implemented to help with debugging other protocols, most 
of which in involve two or more wrappers: when a protocol is doesn't work, a single, 
unified log of events from each peer in the protocol helps in understanding why it 
fails. Distributed Logging also demonstrates, however, controlled sharing of wrapper 
data in a way that will be described in this section. 
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The Distributed Logging protocol consists of two roles: 

1. a Log Relay role, in which a peer collects log data from the wrapper in which 
it runs and forwards that data to a central location; 

2. a Log Merge role, in which a peer runs at the central location, collecting data 
relayed to it and writing that data to a file. 

To create a single log of activity in a network of many wrappers, one runs a Log 
Relay peer in each, wrapper and a Log Merge peer in a single wrapper whose address 
is known to all the others. 

Each Log Relay peer collects data from its wrapper using a shared event buffer. This 
buffer is shared with each task or peer that needs to log events. This sharing is 
controlled by capabilities: a task or peer can log events only if it has a capability to 
append to the event buffer, and the Log Relay peer can only forward events to the 
Log Merge peer if it first has a capability to extract the events from the shared event 
buffer. 

3.2.3    Clock Synchronization 

The Clock Synchronization protocol creates a distributed clock. In other words, wrap- 
pers running this protocol share a consistent view of real time. A distributed clock is 
useful support for other protocols, such as reliable atomic multicast, that may need 
a real time clock for sequencing their actions. 

The Clock Synchronization protocol consists of a single role. Each peer in this role 
periodically measures the difference between its clock and the clocks maintained by 
peers in other wrappers and sets its own clock to the average of the differences. A 
clock difference is measured by passing timestamped messages back and forth between 
two peers: suppose peer 1 sends a message timestamped at its time ti, peer 2 receives 
it, then immediately replies with a message timestamped at its time t2, which peer 1 
receives at its time t3. Then peer l's clock leads peer 2's clock by 

(*s - *i)/2 - *2 

assuming that messages are delayed equally in both directions. To minimize the effect 
of random delays, the protocol repeats the back-and-forth a number of times for each 
measurement, averaging the results. 

Clock Synchronization tolerates crash failures. Peers that do not respond are ignored 
when computing the average of clock differences. A Byzantine fault-tolerant version 
of this protocol was planned but was never implemented [Sch87]. 
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Each wrapper that needs access to a distributed clock runs a single Clock Synchroniza- 
tion peer. This peer maintains a shared clock variable that tells difference between 
the host's clock and the distributed clock time. (The peer could also modify the host's 
clock itself, but most operating systems require the peer to have special privilege to 
do this.) The Clock Synchronization peer is given a capability to read and write the 
shared clock variable; peers in other protocols that need a distributed clock may have 
a read-only capability to the shared clock variable. 

3.2.4    Stable Sharing 

The Stable Sharing protocol enables a group of wrappers to maintain an up-to-date 
picture of the status of the entire group, and can do so in the presence of failures, 
both transient and permanent, in the members of the group. It is used to inspect 
part of an application's state, by finding which wrappers are working and which are 
not. It can be used either by a system administrator or by other applications. 

Stable Sharing creates a self-stabilizing software bus for wrapper status data. A bus 
distributes data to a collection of processes, any of which can write new data to the bus 
and any of which can read the most recent data written. A software bus implements 
a bus using software. A system is self-stabilizing[Sch93], or more concisely, stable, if 
it is guaranteed to converge to one of a predefined set of states even after being forced 
into some state outside that set. 

Each wrapper that participates in a Stable Sharing group will write its own status 
to the software bus, and will read the status of all other wrappers in the group. If 
wrappers join the group, leave, or fail, the protocol is guaranteed, because it is stable, 
to recover by converging to a state in which all working wrappers in the group agree 
on each other's status. 

The Stable Sharing protocol consists of one role. Each peer in this role organizes its 
data about wrappers into a ring, ordered by wrapper address. (Wrapper addresses can 
be ordered in this way because each one consists of an Internet address and a wrapper 
number, both of which can be ordered.) Each peer forwards its data to its successor 
in the ring, and updates its own data when its predecessor in the ring forwards data 
to it. The protocol uses timeouts and acknowledgements in some situations to detect 
failures and reconfigure the ring accordingly. 

Each wrapper that participates in Stable Sharing runs a single protocol peer. This 
peer is given a capability to modify the data about other wrappers. Other protocols 
that need to use this data are given a read-only capability to it. 
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3.2.5    Best Effort Multicast 

Message-passing communication in computer systems can take several forms. Typ- 
ically, messages are passed from a single sender to a single receiver. This type of 
communication is called unicast. In some situations, though, a sender must pass a 
message to many receivers. This is called multicast. More generally, multicast may 
even involve several senders agreeing on a message to pass to one or more receivers. 

The wrapper framework supports multicast communication (and unicast as a special 
case). This support includes both specialized shared data structures and protocols to 
use them. 

A port is an endpoint for multicast communication. So a multicast is sent from one 
port and received at another, or possibly.the same, port. Each port has a unique 
address. For several peers to participate in a multicast, either as senders or receivers, 
the port they use must be distributed. So each wrapper that uses a port must 
maintain data about it; this maintenance is done by metaprotocols such as "Channel 
Control", discussed later in section 3.3.4. 

The simplest wrapper protocol for multicast is called Best Effort. It generalizes 
the Internet's unicast protocol, UDP, which is also "best effort" in that it does not 
guarantee that messages will be delivered, only that a "best effort" will be made 
toward delivery. 

Best Effort consists of one role, used for both sending and receiving. Each peer in 
this role is given at startup: 

• a unique UDP endpoint (also called a "port"); 

• a read-only capability to a list of data about multicast ports. 

To send, the Best Effort peer uses its read-only capability to look up the UDP end- 
points associated with the destination port. It then sends UDP messages to those 
endpoints from its own. To receive, the peer listens for incoming UDP messages. 
When one is received, it uses its read-only capability to look up which peers or tasks 
in the wrapper are waiting for a Best Effort message on the destination port, and it 
delivers the message to them. 

3.2.6    Reliable Multicast 

The Reliable Multicast protocol improves on Best Effort by guaranteeing that mes- 
sages will be delivered.   Even if some of the underlying UDP messages are lost or 
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garbled, Reliable Multicast will eventually deliver every message sent. 

Reliable Multicast is like Best Effort in several ways: 

• it sends and receives from ports; 

• it has a single role for both sending and receiving; 

• every peer uses a unique UDP endpoint; 

• every peer has read-only access to a list of data about multicast ports. 

Reliable Multicast differs from Best Effort only in that the receiver sends an acknowl- 
edgement of every message, and the sender will periodically resend a message until 
the acknowledgement is received. 

This multicast protocol ensures that messages eventually arrive, but it does not ensure 
that they arrive in any particular order. A reliable atomic multicast would guarantee 
that messages arrive in the same order at all destinations. Such a protocol was planned 
to support fault tolerant group communication[Sch90] but was never implemented. 

3.2.7    Encapsulating TCP 

For some applications/it is better to use the Internet TCP protocol for communica- 
tion, rather than one of the wrapper multicast protocols described previously. TCP 
has the disadvantage that it is a unicast protocol rather than multicast, but multi- 
cast is not always needed. On the other hand, TCP has a big advantage in that it is 
both reliable and very efficient, much more efficient than using the Reliable Multicast 
protocol to send unicasts. 

So an encapsulation of TCP was implemented in the wrapper framework. This encap- 
sulation gives TCP the same communication interface as offered by Best Effort and 
Reliable Multicast, e.g., applications send and receive messages at multicast ports. 
Offering the same interface allows switching between protocols to be done easily, 
perhaps even automatically (see section 3.4.2). 

Although the encapsulation of TCP gives TCP the same interface as other wrapper 
communication protocols, it differs from those protocols in the following ways: 

• multicast is impossible, even if the sender or receiver ports are distributed; 

• no protocol peers are needed because TCP is built into every Java environment; 
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TCP handles its own set-up and shut-down of communication channels, unlike 
Best Effort and Reliable Multicast, which depend on a metaprotocol to do the 

same. 

3.2.8    THETA Object Managers 

One approach to fault-tolerant distributed computing was taken in the THETA secure 
distributed operating system[ORA92] and in the Cronus operating system of which 
it was a variant. In this approach, object managers handle all requests for access to 
objects. More than one manager may handle the same object, in which case the object 
is replicated. Typically replicated objects are handled by managers distributed on 
different hosts. Several managers must coordinate access to replicated objects, and 
this coordination makes access to the object tolerant to some host failures and to 
some network partition failures. 

A simple version of the THETA object management protocol was implemented in the 
wrapper framework. The protocol has two roles: 

1. a Client role, which locates a manager for an object, and forwards requests for 
access to the object to the manager; 

2. a Manager role, which handles requests for access by coordinating with other 
Manager peers handling the same object at different locations. 

Wrappers that participate in this protocol may run one or more Manager peers and 
one or more Client peers, depending on the set of objects to be handled and the needs 
of the application that generates requests for object access. 

The THETA protocol does not share any wrapper data structures with other proto- 
cols. However, a more sophisticated version of the protocol could make use of the 
data maintained by the Stable Sharing protocol, to locate objects. It would need 
read-only access to the shared data for this purpose. 

3.3    Metaprotocols 

A metaprotocol is a protocol that must access another protocol as though it were 
data. For example, a protocol that downloads the code for another protocol and then 
runs that protocol is itself a metaprotocol. 
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Metaprotocols allow a wrapper to be configured by a bootstrapping process: an ini- 
tial metaprotocol is loaded, which loads other protocols and metaprotocols, which 
themselves may load others, until finally the required configuration of protocols is 
reached. This bootstrapping process determines not only which protocols are even- 
tually loaded, but also which capabilities each protocol is given. In a well-defined 
bootstrapping process, metaprotocols would give capabilities to each new protocol 
based on the trustworthiness of that protocol. 

The set of metaprotocols implemented in the wrapper framework is basic. It includes 
only those metaprotocols needed to support the protocols listed previously, in section 
3.2. It includes metaprotocols for beginning the bootstrap process, for user control of 
wrappers, and for creating and connecting multicast ports. One other metaprotocol, 
for negotiating and downloading a protocol from another wrapper, was designed but 
was never implemented. 

3.3.1 Boot 

The Boot metaprotocol initializes the wrapper. It begins the bootstrapping process 
that allows other protocols and metaprotocols to be loaded. 

Boot consists of one role. Exactly one peer is created in this role. The Boot peer 
does the following: 

1. assigns the wrapper a unique address; 

2. creates an initial version of each of the standard shared data structures, includ- 
ing clock data and lists of hosts, wrappers, protocols, peers, tasks, ports, and 
log events; 

3. adds itself to the peer list; 

4. starts a peer or peers for Distributed Logging; 

5. starts peers for any other protocols specified on the command line. 

The Boot peer has full access to all shared data structures in the wrapper. 

3.3.2 User Interface 

The User Interface metaprotocol allows user control over the wrappers in an appli- 
cation. The interface it provides is useful both for debugging applications and for 
monitoring their behavior. 
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The User Interface rnetaprotocol consists of two roles: 

1. a Server role, in which a peer carries out commands from the user and from 
other User Interface Server peers in other wrappers; 

2. a Client role, in which a peer interacts with the user and relays commands to a 
Server peer. 

To install the User Interface, a single Server peer is run in each wrapper. The Client, 
unlike most other peers, runs in a separate program outside the wrapper and relays 
commands to the Server via UDP. One or more Clients can be run; several Clients 
allow communication with several Servers. 

User Interface implements commands for starting and stopping protocol peers and 
other tasks, for displaying the state of the shared wrapper data structures, and for 
shutting down the wrapper. Each of these commands can be issued in a "flooding" 
mode, in which each Server peer relays the command to every other Server peer 
it knows about, until every wrapper in an application has handled the command. 
Flooding is useful for making every wrapper in an application do the same thing, 
for example, having every wrapper run the Clock Synchronization protocol or having 
every wrapper shut down. 

Like the Boot peer, every Server peer is given full access to all shared data structures 
in the wrapper. This degree of access is not strictly necessary, but it is convenient 
because the User Interface typically starts many of the other protocols, which them- 
selves need to be given varying degrees of access to the shared data. 

3.3.3    Web Server Interface 

The Web Server Interface rnetaprotocol, like the User Interface, allows a user to 
monitor and control wrappers. It offers the same functions as the User Interface, but 
in a prettier package. 

The Web Server Interface rnetaprotocol, like the User Interface, consists of two roles: 

1. a Server role, in which a peer responds to HyperText Transfer Protocol (HTTP) 
requests; 

2. a Client role, whose peer is a Web browser, such as Netscape, and is outside 
the wrapper. - 
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Like the User Interface Server peer, the Web Server Interface peer has full access to 
shared wrapper data structures, enabling it to start and stop other protocol peers 
and to inspect the wrapper state. 

3.3.4    Channel Control 

The Channel Control metaprotocol is used to make and to break multicast commu- 
nication channels. A communication channel connects two ports so that messages 
can be sent between them. Multicast protocols, such as the Best Effort and Reliable 
Multicast protocols described previously, use these channels to direct a stream of 
messages from a sender to a receiver. Channels are bidirectional, so a connected port 
can be used simultaneously for both sending and receiving. 

Channel Control consists of a single role. A peer in this role has the following func- 
tions: 

• creating and destroying ports; 

• connecting and disconnecting pairs of ports. 

For these functions, the peer must multicast a request to other Channel Control peers 
running on one or more wrappers where the target ports are located. The multicast 
is made reliable using acknowledgements and retransmissions. When creating a new 
port, the Channel Control peer randomly selects wrappers to which the port will be 
distributed, based on the set of wrappers currently running Channel Control peers. 

The Channel Control protocol peers are given capabilities for reading the list of known 
wrappers, and for reading and modifying the list of known ports. 

3.4    Cooperating Protocols 

A protocol's design can sometimes be simplified if it can share data maintained by 
another protocol. Several examples of this sharing can be noted in the previous 
discussion of protocols, e.g., many of the protocols make use of a shared list of known 
wrappers. 

This section discusses two cases of cooperation between protocols not mentioned 
previously. Both involve shared data structures. Both cases show dynamic features 
of the wrappers that were developed on this project. 
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3.4.1    Protected Dynamic Extension 

Suppose a wrapper runs both the Clock Synchronization and Stable Sharing protocols. 
Both these protocols interact with peers in other wrappers. 

Ideally, each protocol should have peers running in every one of a set of mutually 
trusting wrappers: using Clock Synchronization, one would like every wrapper's clock 
to read the same time, and using Stable Sharing, one would like every wrapper to 
be aware of the status of all other wrappers. In most situations, the set of mutually 
trusting wrappers will be the same for both the Clock Synchronization and Stable 
Sharing protocols. 

Both protocols need to maintain data about their interactions with peers in other 
wrappers: 

• a Clock Synchronization peer needs to maintain a history of measurements of 
clock differences with each of its peers; 

• a Stable Sharing peer needs to maintain the status of each other wrapper, as 
reported by its peer on that wrapper. 

Both protocols are designed to dynamically extend, with their own data structures, 
a shared list of wrapper data. In a situation in which the set of mutually trusting 
wrappers is the same for both protocols, both protocols must dynamically extend the 
same shared list. 

A typical scenario for using both protocols might have the following steps: 

1. wrapper W is started; 

2. the Boot peer in W creates a wrapper data list, initially containing an object 
for W's status; 

3. the User Interface peer, at the command of a user, starts the Stable Sharing 
protocol with these steps: 

(a) dynamically extend the wrapper data list with a status data structure 
needed by Stable Sharing; 

(b) create a capability with which the list can be read, new wrappers can be 
added, and wrapper status data changed; 

(c) start the Stable Sharing peer, giving it the new capability. 
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4. the Stable Sharing peer joins the group of already-running peers in other wrap- 
pers (unless it is the first such peer), and begins adding new wrappers and their 
status data to the list; 

5. the User Interface peer starts the Clock Synchronization protocol with these 
steps: 

(a) dynamically extend the wrapper data list with a clock difference data struc- 
ture needed by Clock Synchronization; 

(b) create a capability with which the list can be read, and the clock difference 
data changed; 

(c) start the Clock Synchronization peer, giving it the new capability. 

6. the Clock Synchronization peer begins synchronizing its clock with peers in 
wrappers on the list; 

7. a new wrapper, X is started; 

8. when X starts its Stable Sharing peer, an object representing X is added to 
W's wrapper list; 

9. W and X begin synchronizing clocks. 

This scenario shows several important features: 

• repeated dynamic extension as discussed in section 2.4.3, first for one protocol 
then the other; 

• protected dynamic extension as discussed in section 2.4.4, giving the protocols 
different capabilities to access the same data; 

• cooperation between protocols, as the Stable Sharing protocol dynamically 
changes the set of wrappers used by the Clock Synchronization protocol. 

Does the combination of these protocols undermine the correctness of either?  No, 
because: 

• The behavior of Stable Sharing is unaffected by Clock Synchronization because 
the former has no access to data the latter can modify. 

• The synchronization of wrapper clocks will certainly be affected when new wrap- 
pers are added, but, once the set of wrappers becomes stable, the Stable Sharing 
protocol will eventually converge to a state in which all wrappers agree about 
wrapper status, and then all wrapper clocks will eventually converge to syn- 
chronization. 
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3.4.2    Channel Replacement 

If a wrapper is to replace one communication protocol with another, say, replacing 
Reliable Multicast with an improved version of the same protocol, and to do the 
replacement at runtime, then several requirements must be met: 

• the old and new protocols must offer the same interface to software that uses 
the communication channels it provides; 

• data about communication ports and their connections must be accessible by 
protocols that need it; 

• the Adapter software, described in section 2.2.3, must have access to the peers 
running the communication protocols. 

These requirements imply sharing within the wrapper: of ports, and of protocols. 
They also imply that the Adapter, having low-level control over how communication 
channels are used, must be trusted software. Because the Adapter is part of the 
wrapper framework, though, and not subject to modification or upgrade by users, it 
is possible to ensure its trustworthiness. 

3.5    Distributed CLIPS 

The wrapper framework applications described so far in this chapter have all been new 
code: protocols, written in Java, specifically for use in the wrapper framework. As 
explained in the Introduction, though, one important use of the wrapper framework 
is to wrap preexisting, "legacy" code to incorporate it into a distributed system. This 
section discusses such an application. 

CLIPS is an expert system shell created by NASA[NAS99]. It implements a rule- 
based approach to expert system programming. In this approach, a program consists 
of facts and rules of inference for manipulating and reasoning about those facts. A 
program is run by applying an inference engine to process the rules. CLIPS provides 
both a language for expressing facts and rules and an inference engine for executing 
them. 

As part of this project, a wrapper for CLIPS was created. This wrapper allowed one 
instance of CLIPS to send facts and/or rules to another instance and have the remote 
inference engine execute them. The sending and receiving of CLIPS data was handled 
by the wrapper's Encapsulated TCP protocol. (Multicast protocols could have been 
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used instead, but this experiment was never tried.) The wrapping of CLIPS created, 
in effect, a new distributed CLIPS application out of preexisting components. 
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Chapter 4 

Conclusion 

The accomplishments of this project were as follows: 

• We designed a framework for software wrappers. These wrappers allow a dis- 
tributed system to be glued together from wrapped components using pluggable 
communication protocols. In our design, protocols may be added to a wrapper 
or replaced while the wrapper is in operation - this allows for adaptation. Pro- 
tocols may also interact via shared data structures within the wrapper - this 
encourages efficiency and supports continuous operation during upgrades. 

We analyzed the options available for protection within a wrapper. No option 
analyzed depends on hardware-specific protection mechanisms. We specifically 
showed how to implement all the protection options in Java. 

We invented a mechanism, called dynamic extension, for extending the shared 
data structures within a wrapper while maintaining protection. 

We implemented the wrapper framework in Java. Our implementation includes 
some supporting tools: 

• 

• 

- a Capability Generator tool: this tool takes the Java source for data struc- 
tures to be protected and generates new Java source for capabilities to 
those data structures; 

- various tools for manipulating Java bytecodes: these tools were intended 
for use by metaprotocols when downloading bytecodes from other wrap- 
pers, but they were never actually used for this purpose; 

- a basic Capability Verifier: this tool, described in section 2.3.3, was imple- 
mented using the Java bytecode manipulation tools; 
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• 

• 

These supporting tools were also written in Java. 

We populated the wrapper framework with a variety of protocols, also written 
in Java. 

We wrapped CLIPS, an expert system shell, as an example of legacy code, and 
built a distributed CLIPS system. 

The project received less funding than originally planned, and as a result several tasks 
that we proposed were left unfinished: 

• Adapters, discussed in section 2.2.3, were designed to switch between communi- 
cation protocols while a communication channel was in use. This functionality 
was never completed. 

• A negotiation metaprotocol, described in section 2.2.1, was designed but never 
implemented. 

• Three specification languages, for wrapper interfaces, for component properties, 
and for protocols, were proposed. Some language design work was done, but 
was never completed. Instead, we simply used Java to specify interfaces and 
properties, and to implement protocols, but this approach is inferior to the one 
we proposed. 

One final comment: Our implementation approach, using Java, depends on Java byte- 
code manipulation tools for code analysis and modification. Bytecode manipulation 
tools now exist that are better than the ones we wrote for this project[CCK98]. If 
this work were continued, those other tools should replace ours in metaprotocols that 
need them. 
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